
0 SimpleSum

0.1 Problem

Given a sequence of n integers a1, . . . , an, compute the sum s = ∑n
i=1 ai.

0.2 Input

The first line contains a single integer n (1 ≤ n ≤ 1000). n lines follow, with the ith line
containing a single integer representing ai (0 ≤ ai ≤ 100).

0.3 Output

Output the sum s followed by a newline character.

0.4 Sample Data

Input Output
3
1
2
42

45

1

1 The 3n + 1 problem

1.1 Problem

Problems in Computer Science are often classified as belonging to a certain class of
problems (e.g. NP, Unsolvable). In this problem you will be analyzing a property of an
algorithm whose classification is not known for all possible inputs.
Consider the following algorithm:

1. input n

2. print n

3. if n = 1 then STOP
4. if n is odd, then n := 3n + 1
5. else n := n/2
6. goto 2

Given the input 22, the following sequence of numbers will be printed:

22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any
integral input value. Despite the simplicity of the algorithm, it is unknown whether this
conjecture is true. It has been verified, however, for all integers in {1, . . . , 1000000} (and,
in fact, for many more numbers than this).
Given an input n, it is possible to determine the length of the sequence of printed numbers
(including the 1). For a given n this is called the Collatz-length of n. In the example
above, the Collatz-length of 22 is 16. For two given numbers i and j you are to determine
the maximum Collatz-length of numbers in [i, j].

1.2 Input

The input consists of a pair of integers i and j (1 ≤ i ≤ j < 1000).

1.3 Output

Output the maximum Collatz length for starting values in {i, i + 1, . . . , j − 1, j}, followed
by a newline character.

3

1.4 Sample Data

Input Output
1 10 20

100 200 125

201 210 89

900 999 174

4

2 Speeding

2.1 Problem

Always the troublemaker, Bessie the cow has stolen Farmer John’s tractor and taken off
down the road!

The road is exactly 100 miles long, and Bessie drives the entire length of the road
before ultimately being pulled over by a police officer, who gives Bessie a ticket for
exceeding the speed limit, for having an expired license, and for operating a motor vehicle
while being a cow. While Bessie concedes that the last two tickets are probably valid,
she questions whether the police officer was correct in issuing the speeding ticket, and
she wants to determine for herself if she has indeed driven faster than the speed limit for
part of her journey.

The road is divided into N segments, each described by a positive integer length in miles,
as well as an integer speed limit in the range 1 . . . 100 miles per hour. As the road is 100
miles long, the lengths of all N segments add up to 100. For example, the road might
start with a segment of length 45 miles, with speed limit 70, and then it might end with
a segment of length 55 miles, with speed limit 60.

Bessie’s journey can also be described by a series of segments, M of them. During
each segment, she travels for a certain positive integer number of miles, at a certain
integer speed. For example, she might begin by traveling 50 miles at a speed of 65, then
another 50 miles at a speed of 55. The lengths of all M segments add to 100 total miles.
Farmer John’s tractor can drive 100 miles per hour at its fastest.

Given the information above, please determine the maximum amount over the speed
limit that Bessie travels during any part of her journey.

2.2 Input

The first line of the input contains N and M , separated by a space.
The next N lines each contain two integers describing a road segment, giving its length
and speed limit.
The next M lines each contain two integers describing a segment in Bessie’s journey,
giving the length and also the speed at which Bessie was driving.

2.3 Output

Please output a single line containing the maximum amount over the speed limit Bessie
drove during any part of her journey. If she never exceeds the speed limit, please output
0.

5

2.4 Sample Data

Input Output
3 3
40 75
50 35
10 45
40 76
20 30
40 40

5

6

3 Bicoloring

3.1 Problem

In 1976 the “Four Color Map Theorem" was proven with the assistance of a computer.
This theorem states that every map can be colored using only four colors in such a way
that no region is colored using the same color as a neighbor region. Here you are asked to
solve a simpler similar problem. You have to decide whether a given arbitrary connected
graph can be bicolored. That is, if one can assign colors (from a palette of two) to the
nodes in such a way that no two adjacent nodes have the same color. To simplify the
problem you can assume:

• There are no loops, i.e. no node has an edge to itself.
• There are no multi-edges, i.e. from any node to any other node there is at most

one edge.
• The graph is undirected.
• The graph is strongly connected. That is, for each pair a, b of nodes, there exists a

path from a to b in the graph.

The nodes of the graphs are identified by the integers 0 to n− 1 for some n.

3.2 Input

The first line contains an integer n, specifying the number n of nodes in the graph
(1 < n ≤ 200). The second line contains the number m of edges (1 ≤ m ≤ n(n−1)

2). m
lines follow, each containing two integers a and b (0 ≤ a, b < n), specifying that there is
an (undirected) edge between the nodes a and b.

3.3 Output

Output a single line containing the literal string “BICOLORABLE.” or “NOT BICOL-
ORABLE.” (without the quotes), specifying whether the graph is bicolorable or not.
Terminate the output with a single newline character.

7

3.4 Sample Data

Input Output
3
3
0 1
1 2
2 0

NOT BICOLORABLE .

9
8
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8

BICOLORABLE .

8

4 Oil Deposits

4.1 Problem

The GeoSurvComp geologic survey company is responsible for detecting underground oil
deposits. GeoSurvComp works with one large rectangular region of land at a time, and
creates a grid that divides the land into numerous square plots. It then analyzes each
plot separately, using sensing equipment to determine whether or not the plot contains
oil.
A plot containing oil is called a pocket. If two pockets are adjacent, they are part of the
same oil deposit. Oil deposits can be quite large and may contain numerous pockets.
Your job is to determine how many different oil deposits are contained in a grid.

4.2 Input

The input file contains one or more grids. Each grid begins with a line containing m and
n, the number of rows and columns in the grid, separated by a single space. If m = 0 it
signals the end of the input; otherwise 1 ≤ m ≤ 100 and 1 ≤ n ≤ 100.
Following this are m lines of n characters each (not counting the end-of-line characters).
Each character corresponds to one plot, and is either *, representing the absence of oil,
or @, representing an oil pocket.

4.3 Output

For each grid, output the number of distinct oil deposits. Two different pockets are part
of the same oil deposit if they are adjacent horizontally, vertically, or diagonally.

9

4.4 Sample Data

Input Output
1 1
*
3 5
@@*
@
@@*
1 8
@@ ****@*
5 5
****@
@@@
*@**@
@@@*@
@@**@
0 0

0
1
2
2

10

5 Sum2D

5.1 Problem

You are given a rectangular field of integers with a width W and a height H. These
integers are all in the range [-1000,1000]. Your task is to write a programm that computes
the sum of all integers in a rectangular subfield. You are therefore additionally given a
list of Q subrectangles. For each of these subrectangles you should compute the sum.

5.2 Input

The first line contains W , H and Q in that order.
The next H lines contain each W integers seperated by a space. This is the rectangular
field.
After that another Q lines follow with 4 integers x1, y1, x2, y2 in that order. (x1, y1) and
(x2, y2) form two opposing edges of a subrectangle. Coordinates are in the range [1,W]
or [1,H]. The edges should be included in the subrectangle.
H and W will not exceed 1000.

5.3 Output

For each subrectangle print the sum of the integers in it on a line of its own.

5.4 Sample Data

Input Output
5 4 3
1 5 -3 8 -4
2 4 -1 -5 9
10 1 0 -8 5
3 5 9 0 1
1 1 5 4
2 3 2 3
4 3 2 2

42
1
-9

11

6 Fish

6.1 Problem

In a small coastal country, all towns are situated on a long coastline (which we will model
as a straight line). A long straight road runs along the coast, connecting the towns. The
position of each town can be described by a single non-negative integer, the distance (in
kilometers) from the start of the road.
Most of the citizens are fishermen, and they catch huge amounts of fish. After the fishing
season is over and before the tourist season starts, the fish can be transported between
different towns. A town can accommodate x tourists if it has x tons of fish available. The
goal is to accommodate the largest possible number of tourists while distributing them
evenly between towns. In other words, we want to find the largest integer y for which it
is possible to distribute fish so that each town can accommodate at least y tourists.
In one shipment, an integral number of tons of fish is sent from one town to another.
During transportation, one ton of fish per kilometer traveled is lost to hungry pillagers
descending from the mountains. More formally, if a town ships f tons of fish to another
town that is d kilometers away, then f − d tons will arrive at the destination; if f is less
than d, then the entire shipment is lost.
It is possible to arbitrarily repackage and combine shipments in intermediate towns. For
example, we can send shipments from towns a and b to town c, combine half of the
remaining fish from both shipments with the fish originating in c and send it in a single
large shipment from town c to town d.
Write a program that, given the positions of all towns and the amount of fish each town
produces, determines the largest number of tourists that can be accommodated by each
city after the fish have been distributed.

6.2 Input

The first line contains a single integer n, 1 ≤ n ≤ 105, the number of towns. Each of the
following n lines contains two integers p and f , 0 ≤ p, f ≤ 1012, the position of a town
(in kilometers) and the amount of fish it produces (in tons). The towns will be sorted in
ascending order of position. The positions of all towns will be distinct.

6.3 Output

Output the largest number of tourists y from the task description followed by a newline
character.

13

6.4 Sample Data

Input Output
5
1 0
2 21
4 0
5 7
7 6

6

14

7 Lost Marbles

7.1 Problem

You have been given a large rectangular slab of marble, which you are supposed to cut
to rectangular marble plates of sizes W1 ×H1, W2 ×H2, . . . , Wn ×Hn.
Any piece of marble (the slab or the plates cut from it) can be cut either horizontally or
vertically into two rectangular plates with integral widths and heights, cutting completely
through that piece. This is the only way to cut pieces and pieces cannot be joined
together. Since the marble has a pattern on it, the plates cannot be rotated: if you cut
a plate of size A × B then it cannot be used as a plate of size B × A unless A = B.
A marble plate is wasted if it is not of any of the desired sizes after all cuts are completed.
You can make zero or more plates of each desired size as long as you minimize the amount
of wasted marble. Because no one wants you losing your marbles.

As an example, assume that the size of the original slab is 21× 11, and the desired plate
sizes are 10× 4, 6× 2, 7× 5, and 15× 10. The minimum possible area wasted is 10, and

the figure shows one sequence of cuts with total waste area of size 10.

7.2 Input

The first line of input contains two integers W and H (1 ≤ W, H ≤ 600), the size of
the original slab. The second line contains one integer n (1 ≤ n ≤ 200): the number
of desired plate sizes. The following n lines each contain two integers Wi and Hi

(1 ≤Wi ≤W, 1 ≤ Hi ≤ H), the desired plate sizes.

7.3 Output

Print a single integer: the minimum total area of the original slab that must be wasted.

15

7.4 Sample Data

Input Output
21 11
4
10 4
6 2
7 5
15 10

10

16

8 Modulo Data Structures

8.1 Problem

You have an array, Arr[1 . . . N]. Initially, all values of Arr[i] = 0. The array supports
the following two types of querries:

1. Increase all Arr[k] by C for all k ≡ A(modB)
2. Output Arr[D] for a given D.

8.2 Input

The first two lines of input consists of two integers, N and Q, representing the length of
the array and the number of queries, respectively. Note that 1 ≤ N, Q ≤ 200000.
The following Q lines all begin with an integer T representing the type of query. If T = 1,
then it will be followed by three integers representing A, B and C respectively. Note that
1 ≤ C ≤ 10000, 0 ≤ A ≤ B ≤ N . Else, T will be 2, and it will be followed by one integer
representing D, subjected to 1 ≤ D ≤ N .

8.3 Output

For each query of type 2, output the integer value of Arr[D] on a separate line.

8.4 Sample Data

Input Output
5 10
1 1 2 7
1 4 5 6
1 2 3 3
2 1
2 2
2 3
1 3 4 3
2 3
2 4
2 5

7
3
7
10
6
10

17

	SimpleSum
	Problem
	Input
	Output
	Sample Data

	The 3n + 1 problem
	Problem
	Input
	Output
	Sample Data

	Speeding
	Problem
	Input
	Output
	Sample Data

	Bicoloring
	Problem
	Input
	Output
	Sample Data

	Oil Deposits
	Problem
	Input
	Output
	Sample Data

	Sum2D
	Problem
	Input
	Output
	Sample Data

	Fish
	Problem
	Input
	Output
	Sample Data

	Lost Marbles
	Problem
	Input
	Output
	Sample Data

	Modulo Data Structures
	Problem
	Input
	Output
	Sample Data

