Lösungen für den GetConnected 2015

Niklas Baumstark Tobias Heuer Sebastian Ullrich Tung Nguyen Xuan

6. Februar 2015

SimpleSum

Aufgabe

- Gegeben n, a_1, \ldots, a_n
- Gesucht Summe $s = \sum_{i=1}^{n} a_i$

Lösung

- Straight-forward : for-Schleife
- $0 \le s \le 10^5 \Rightarrow$ int reicht aus

3n+1: Aufgabe

Gegeben

Paare von Zahlen i, j.

Gesucht

Maximale Collatz-Länge der Zahlen in [i, j].

3n+1: Lösung

Collatz-Länge kann direkt durch Simulation berechnet werden:

3n+1: Lösung

Es genügt nun, das Maximum im gegebenen Bereich auszugeben:

```
cin >> i >> j;
int answer = 0;
for (int n = i; n <= j; ++n)
    answer = max(answer, collatz_length(n));
cout << answer << "\n";</pre>
```

ChocoBar

Aufgabe

• Wie oft muss man eine $w \times h$ Tafel Schokolade minimal brechen, um Einzelstücke zu erhalten?

Lösung

- 1 Mal Brechen \Rightarrow 1 Stück mehr
- Am Anfang: 1 Stück
- Am Ende: $w \cdot h$ Stücke
- \Rightarrow Man bricht immer genau $w \cdot h 1$ Mal

Professor Snørbørden: Aufgabe

- Gegeben: Sequenz von korrekten und fehlerhaften Folien
- Schlafbedürfnis des Studenten
- Aufgabe: Schlaf so legen, dass Student möglichst wenig fehlerhafte Folien verschläft

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.
- 0110001001

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

• 0110001001

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

$$-1 + 1$$

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

• 0110001001

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

$$+0 - 0$$

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

• 0110001001

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

$$-0 + 1$$

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.
- 0110001001

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

$$-1 + 1$$

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

• 0110001001

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

$$-1 + 0$$

- Lösung: Alle Positionen durchprobieren.
- Beispiel: Student muss 5 Folien schlafen.

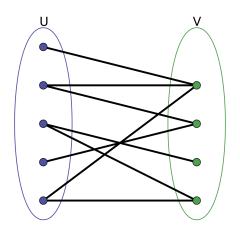
• 0110001001

Bicoloring

Problem

Gegeben ist ein ungerichteter zusammenhängender Graph G=(V,E). Entscheide, ob die Knoten von G mit zwei Farben einfärbar sind, sodass keine zwei adjazenten Knoten die gleiche Farbe haben (d.h. G ist bipartit).

Bicoloring: Beispiel



Bicoloring: Lösung

Lösung

- Führe Tiefensuche von ein beliebigen Knoten aus.
- Markiere Knoten abwechselnd mit 0 und 1 im Verlauf der Tiefensuche (0 und 1 repräsentieren die Farben).
- Wird ein Knoten besucht, welcher schon vorher besucht wurde und die gleiche Farbe hat wie sein Vorgänger, dann gib "NOT BICOLORABLE." aus.
- Ist jeder Knoten besucht und kein Konflikt trat auf, gib "BICOLORABLE." aus.

Lawnmower: Aufgabe

Gegeben

- Tabelle $A_{n \times m}$
- Anfang : $A_{i,j} = 100 \ \forall i,j$
- 2 Operationen, beliebig oft auszuführen
 - rih: $\forall 0 \leq j < m, A_{i,j} > h \Rightarrow A_{i,j} = h$
 - cjh: $\forall 0 \leq i < n, A_{i,j} > h \Rightarrow A_{i,j} = h$
- Endzustand $B_{n \times m}$

Gesucht

Ist B von A erreichbar?

Was, wenn B erreicht ist?

Was, wenn B erreicht ist?

- $rMax[i] = max\{ B_{i,j}, 0 \le j < m \}$
- $cMax[j] = max\{ B_{i,j}, 0 \le i < n \}$

Was, wenn B erreicht ist?

- $rMax[i] = max\{ B_{i,j}, 0 \le j < m \}$
- $cMax[j] = max\{ B_{i,j}, 0 \le i < n \}$
- Letzte Operation an der Stelle i, j ist
 - r i h \Rightarrow $B_{i,j} = rMax[i]$
 - c j h \Rightarrow $B_{i,j} = cMax[j]$
 - $\Rightarrow B_{i,j} \ge \min(rMax[i], cMax[j])$ (*)

Was, wenn B erreicht ist?

- $rMax[i] = max\{ B_{i,j}, 0 \le j < m \}$
- $cMax[j] = max\{ B_{i,j}, 0 \le i < n \}$
- Letzte Operation an der Stelle i, j ist
 - rih $\Rightarrow B_{i,j} = rMax[i]$
 - c j h \Rightarrow $B_{i,j} = cMax[j]$
 - $\Rightarrow B_{i,j} \ge \min(rMax[i], cMax[j])$ (*)

Ist (*) erfüllt, ist B erreichbar?

Was, wenn B erreicht ist?

- $rMax[i] = max\{ B_{i,j}, 0 \le j < m \}$
- $cMax[j] = max\{ B_{i,j}, 0 \le i < n \}$
- Letzte Operation an der Stelle i, j ist
 - rih $\Rightarrow B_{i,j} = rMax[i]$
 - c j h \Rightarrow $B_{i,j} = cMax[j]$
 - $\Rightarrow B_{i,j} \ge \min(rMax[i], cMax[j])$ (*)

Ist (*) erfüllt, ist B erreichbar?

- Ja, konstruiere wie folgt : $\forall i, j$
 - $B_{i,j} = rMax[i] \Rightarrow r i B_{i,j}$
 - $B_{i,j} = cMax[i] \Rightarrow c j B_{i,j}$

Was, wenn B erreicht ist?

- $rMax[i] = max\{ B_{i,j}, 0 \le j < m \}$
- $cMax[j] = max\{ B_{i,j}, 0 \le i < n \}$
- Letzte Operation an der Stelle i, j ist
 - r i h \Rightarrow $B_{i,j} = rMax[i]$
 - c j h \Rightarrow $B_{i,j} = cMax[j]$
 - $\Rightarrow B_{i,j} \geq min(rMax[i], cMax[j])$ (*)

Ist (*) erfüllt, ist B erreichbar?

- Ja, konstruiere wie folgt : $\forall i, j$
 - $B_{i,j} = rMax[i] \Rightarrow r i B_{i,j}$
 - $B_{i,j} = cMax[i] \Rightarrow c j B_{i,j}$
- rMax, cMax linear berechnenbar $\Rightarrow \mathcal{O}(n \cdot m)$

Elevator: Aufgabe

Gegeben

- $a, b, c \in \mathbb{N}_{>0}$
- $1 < x < 10^{12}$

Gefragt

- Ist x darstellbar als $x = 1 + \alpha \cdot a + \beta \cdot b + \gamma \cdot c$ mit $\alpha, \beta, \gamma \in \mathbb{N}_{\geq 0}$?
- Standardansatz mit BFS oder $\mathsf{DP} = \Omega(\mathsf{x}) \to \mathsf{zu}$ langsam

Elevator: Lösung

Ansatz

- Falls y erreichbar, dann auch y+kc erreichbar für alle $k\in\mathbb{N}_{\geq 0}$
- Definiere f(n) := niedrigstes erreichbares Stockwerk y mit $y \equiv m \pmod{c}$ oder ∞ .
- Rekurrenz:

$$f(1) = 1$$

 $f(n) = \min\{f((n-a) \mod c) + a, f((n-b) \mod c) + b\}$

• Lösung: x ist erreichbar, falls $x \ge f(x \mod c)$

Elevator: Lösung (2)

Ansatz

• Rekurrenz:

$$\begin{split} f(1) &= 1 \\ f(n) &= \min\{f(n-a) + \textit{a,} f(n-b) + \textit{b}\} \end{split}$$

- Löse mit Dijkstra-Algorithmus:
 - Knotenmenge $V = \{0, \ldots, c-1\}$
 - Kante von n zu (n+a) mod c mit Gewicht a. Analog für b.
- Verarbeite Knoten $n \in V$ nach aufsteigendem f(n).
- Laufzeit: $\mathcal{O}(c \cdot \log c + q)$, q = Anzahl Queries

n	f(n)
0	∞
1	1
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞

n	f(n)
0	∞
1	1
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞

n	f(n)
0	∞
1	1
2	∞
3	∞
4	4
5	5
6	∞
7	∞

n	f(n)
0	∞
1	2
2	∞
3	∞
4	4
5	5
6	∞
7	∞

n	f(n)
0	8
1	2
2	∞
3	∞
4	4
5	5
6	∞
7	7

n	f(n)
0	8
1	2
2	∞
3	∞
4	4
5	5
6	∞
7	7

n	f(n)
0	8
1	2
2	∞
3	∞
4	4
5	5
6	∞
7	7

n	f(n)
0	8
1	2
2	10
2 3	11
4	4
5	5
6	∞
7	7

n	f(n)
0	8
1	2
2	10
3	11
4	4
5	5
6	∞
7	7

n	f(n)
0	8
1	2
2	10
3	11
4	4
5	5
6	∞
7	7

n	f(n)
0	8
1	2
2	10
3	11
4	4
5	5
6	14
7	7

n	f(n)
0	8
1	2
2	10
3	11
4	4
5	5
6	14
7	7

n	f(n)
0	8
1	2
2	10
3	11
4	4
5	5
6	14
7	7

n	f(n)
0	8
1	2
2	10
3	11
4	4
5	5
6	14
7	7